Soumik Purkayastha

  • Assistant Professor
  • Faculty in Biostatistics

Broadly, I am interested in scalable and flexible (bio)statistical and machine learning approaches for design and analysis of biomedical studies and their applications to medical or social science and public policy. I use Bayesian methods as well as classical semi- and non-parametric approaches. I love challenges in statistical computing and spend most of my time rubber-ducking my code to myself.

My current research interests include:

  1. Information-theoretic framework for association and causality: development of statistical methods for studying association and causality without relying on traditional causal inference assumptions, with applications in areas like mediation analysis and instrumental variables.
  2. Compartmental models for infectious disease modeling: development of spatiotemporal forecasting techniques to study transmission and fallout of infectious diseases, with specific emphasis on COVID-19.
Education

2014 - 17                       B.Sc. (Hons.), St. Xavier’s College (Autonomous), Kolkata,                                                            WB, INDIA

2017 - 19                       M.Stat. (Specialization in Biostatistics), Indian Statistical                                                              Institute, Kolkata, WB, INDIA

2019 - 21                       M.S. in Biostatistics, University of Michigan, Ann Arbor,                                                               MI, USA

2019 - 24                      Ph.D. in Biostatistics, University of Michigan, Ann Arbor,                                                              MI, USA

Selected Publications

(+: co-first author)

  1. Zhou, Y., Wang, L., Zhang, L., Shi, L., Yang, K., He, J., Bangyao, Z., Overton, W., Purkayastha, S., & Song, P. (2020). A Spatiotemporal Epidemiological Prediction Model to Inform County-Level COVID-19 Risk in the United States. Harvard Data Science Review, (Special Issue 1).
  2. Purkayastha, S., Bhattacharyya, R., Bhaduri, R., Kundu, R., Gu, X., Salvatore, M., Ray, D., Mishra, S. and Mukherjee, B., 2021. A comparison of five epidemiological models for transmission of SARS-CoV-2 in India. BMC infectious diseases, 21, pp.1-23.
  3. Purkayastha, S., Kundu, R., Bhaduri, R., Barker, D., Kleinsasser, M., Ray, D. and Mukherjee, B., 2021. Estimating the wave 1 and wave 2 infection fatality rates from SARS-CoV-2 in India. BMC research notes, 14, pp.1-7.
  4. Salvatore, M.+, Purkayastha, S.+, Ganapathi, L., Bhattacharyya, R., Kundu, R., Zimmermann, L., Ray, D., Hazra, A., Kleinsasser, M., Solomon, S. and Subbaraman, R., 2022. Lessons from SARS-CoV-2 in India: A data-driven framework for pandemic resilience. Science advances, 8(24), p.eabp8621.
  5. Purkayastha, S. and Song, P.X.K., 2024. fastMI: A fast and consistent copula-based nonparametric estimator of mutual information. Journal of Multivariate Analysis, 201, p.105270.

Open-Source Software

  1. Bhaduri R., Kundu R., Purkayastha S., Beesley L., Mukherjee B., Kleinsasser, M. 2021. SEIRfansy: Extended Susceptible-Exposed-Infected-Recovery Model
  2. Purkayastha, S. and Song, P.X.K., 2024. fastMI: A fast and consistent copula-based nonparametric estimator of mutual information.
  3. Purkayastha, S. and Song, P.X.K., 2024. comet: Collider-mediator testing using information theory.
Department/Affiliation