Ashley I Naimi, PhD

Assistant Professor, Epidemiology


5131 Public Health, 130 DeSoto Street, Pittsburgh, PA 15261
R-znvy: nfuyrl.anvzv@cvgg.rqh
Primary Phone: 967-179-8629
Fax: 967-179-2842
Web site:

Ellen Mooney, ryz664@cvgg.rqh, 967-179-6808

Personal Statement

My research falls at the crossroads of causal inference, social epidemiology and human reproduction.  Generally, I develop and apply analytic methods to non-experimental data to assess the effectiveness of potential policy interventions to reduce the overall burden of and social disparities in adverse pregnancy and childhood outcomes.

A major focus of my current work is the development, use and interpretation of statistical methods for causal mediation analysis in social epidemiology.  I am adapting a variety of modeling techniques to estimate more realistic intervention effects (stochastic mediation contrasts).  My approach relies heavily on the principles and concepts of causal inference, comparative effectiveness research and implementation science.  The end goal of this research is to develop targeted actionable strategies to reduce racial disparities in preterm birth.


2013 | McGill University, Montreal, QC, Canada | Post-Doctoral Research Fellowship

2012 | University of North Carolina at Chapel Hill, Chapel Hill, NC | PhD


2018 | EPIDEM 2187 - Epidemiological Methods 2



Research Interests

  • Reproductive/Perinatal Epidemiology
  • Social Epidemiology
  • Causal Inference
  • Systems Science
  • Machine Learning

Honors and Awards

Lilienfeld Post-Doctoral Prize Paper, Society for Epidemiologic Research (SER), June 2015

Selected Publications

1. Naimi AI, Balzer LB. Stacked generalization: an introduction to super learning. European Journal of Epidemiology. 2018 May;33(5):459-464. PMID: 29637384.


2. Naimi AI, Platt RW, Larkin JC. Machine Learning for Fetal Growth Prediction. Epidemiology. 2018 Mar; 29(2):290-298. PMID: 29199998.


3. Naimi AI. On wagging tales about causal inference. International Journal of Epidemiology. 2017 Aug 1; 46(4):1340-1342. PMID: 28575465.


4. Naimi AI, Cole SR. Kennedy EH. An introduction to g methods. International Journal of Epidemiology. 2017 Apr 1; 46(2):756-762.PMID: 28039382.


5. Naimi AI, Schnitzer ME, Moodie EE, Bodnar LM. Mediation Analysis for Health Disparities Research. American Journal of Epidemiology. 2016 Aug 15; 184(4):315-24. PMID: 27489089.


6. Naimi AI. Commentary: Integrating Complex Systems Thinking into Epidemiologic Research. Epidemiology. 2016 Nov; 27(6):843-7. PMID: 27488060.


7. Naimi AI. The Counterfactual Implications of Fundamental Cause Theory. Current Epidemiology Reports. 2016 Mar; 3(1):92-97.doi: 10.1007/s40471-016-0067-7.


8. Naimi AI. Invited commentary: boundless science-putting natural direct and indirect effects in a clearerempirical context. American Journal of Epidemiology. 2015 Jul 15; 182(2):109-14. PMID: 25944884.


9. Naimi AI, Tchetgen Tchetgen EJ. Invited commentary: Estimating population impact in the presence of competing events. American Journal of Epidemiology. 2015 Apr 15; 181(8):571-4. PMID: 25816819.

Ashley I Naimi