Biostatistics Events

Biostatistics Departmental Calendar

Event
Mon 6/1/2020 11:00AM - 1:00PM
Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE
Mon 6/1/2020 11:00AM - 1:00PM
** Online/Virtual Event **

Jun Zhang of the Department of Biostatistics defends her dissertation on "Interpretable Analysis of Multivariate Functional Data". 


** Online/Virtual Event **
Sat 8/1/2020 to Thu 8/6/2020
Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA
Sat 8/1/2020 to Thu 8/6/2020


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/14/2021 to Wed 3/17/2021
Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore
Sun 3/14/2021 to Wed 3/17/2021


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/7/2021 to Thu 8/12/2021
Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA
Sat 8/7/2021 to Thu 8/12/2021


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/27/2022 to Wed 3/30/2022
Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston
Sun 3/27/2022 to Wed 3/30/2022


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/6/2022 to Thu 8/11/2022
Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC
Sat 8/6/2022 to Thu 8/11/2022


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Recent Events

Biostatistics Seminar Series

Bin Nan, University of Michigan - Regression with Covariate Subject to Limit of Detection

Thursday 3/24 3:30PM - 4:30PM
Public Health Lecture Hall (A115)

 

ABSTRACT
We consider generalized linear regression with left-censored covariate due to the lower limit of detection. The complete case analysis by eliminating observations with values below limit of detection yields valid estimates for regression coefficients, but loses efficiency. Substitution methods are biased; and maximum likelihood method relies on parametric models for the unobservable tail probability, thus may suffer from model misspecification. To obtain robust and more efficient results, we propose a semiparametric likelihood-based approach for the regression parameters using an accelerated failure time model for the covariate subject to limit of detection. A two-stage estimation procedure is considered, where the conditional distribution of the covariate with limit of detection given other variables is estimated prior to maximizing the likelihood function for the regression parameters. The proposed method outperforms the complete case analysis and the substitution methods as well in simulation studies. Asymptotic properties are provided. This is a joint work with Shengchun Kong. 
Bin Nan, PhD, Dept. of Biostatistics, University of Michigan
" Regression with Covariate Subject to Limit of Detection."
DocumentSeminar Flyer - Bin Nan.pdf

 

Last Updated On Monday, March 28, 2016 by Borkowski, Matthew Gerard
Created On Monday, March 28, 2016

AprMay 2020Jun
SunMonTueWedThuFriSat
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

Submit events and news

Click to enter calendar events or share news and announcements.