Biostatistics Events

Biostatistics Departmental Calendar

Event
Mon 6/1/2020 11:00AM - 1:00PM
Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE
Mon 6/1/2020 11:00AM - 1:00PM
** Online/Virtual Event **

Jun Zhang of the Department of Biostatistics defends her dissertation on "Interpretable Analysis of Multivariate Functional Data". 


** Online/Virtual Event **
Sat 8/1/2020 to Thu 8/6/2020
Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA
Sat 8/1/2020 to Thu 8/6/2020


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/14/2021 to Wed 3/17/2021
Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore
Sun 3/14/2021 to Wed 3/17/2021


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/7/2021 to Thu 8/12/2021
Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA
Sat 8/7/2021 to Thu 8/12/2021


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/27/2022 to Wed 3/30/2022
Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston
Sun 3/27/2022 to Wed 3/30/2022


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/6/2022 to Thu 8/11/2022
Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC
Sat 8/6/2022 to Thu 8/11/2022


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Recent Events

Biostatistics Seminar Series

Jingshen Wang, University of Michigan

Thursday 1/10 3:30PM - 4:30PM
Public Health Lecture Hall (A115)

Inference on Treatment Effects after Model Selection

Inferring cause-effect relationships between variables is of primary importance in many sciences. In this talk, I will discuss two approaches for making valid inference on treatment effects when a large number of covariates are present. The first approach is to perform model selection and then to deliver inference based on the selected model. If the inference is made ignoring the randomness of the model selection process, then there could be severe biases in estimating the parameters of interest. While the estimation bias in an under-fitted model is well understood, I will address a lesser known bias that arises from an over-fitted model. The over-fitting bias can be eliminated through data splitting at the cost of statistical efficiency, and I will propose a repeated data splitting approach to mitigate the efficiency loss. The second approach concerns the existing methods for debiased inference. I will show that the debiasing approach is an extension of OLS to high dimensions, and that a careful bias analysis leads to an improvement to further control the bias. The comparison between these two approaches provides insights into their intrinsic bias-variance trade-off, and I will show that the debiasing approach may lose efficiency in observational studies.

Last Updated On Monday, January 7, 2019 by Tang, Lu
Created On Friday, January 4, 2019

AprMay 2020Jun
SunMonTueWedThuFriSat
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

Submit events and news

Click to enter calendar events or share news and announcements.