Biostatistics Events

Biostatistics Departmental Calendar

Event
Mon 6/1/2020 11:00AM - 1:00PM
Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE Biostatistics Dissertation Defense
Jun Zhang-Interpretable Analysis of Multivariate Functional Data-ONLINE
Mon 6/1/2020 11:00AM - 1:00PM
** Online/Virtual Event **

Jun Zhang of the Department of Biostatistics defends her dissertation on "Interpretable Analysis of Multivariate Functional Data". 


** Online/Virtual Event **
Sat 8/1/2020 to Thu 8/6/2020
Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA Biostatistics Conference
Joint Statistical Meetings - - JSM 2020, Philadelphia, PA
Sat 8/1/2020 to Thu 8/6/2020


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/14/2021 to Wed 3/17/2021
Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore Biostatistics Conference
ENAR 2021 Spring Meeting of the International Biometric Society -- Baltimore
Sun 3/14/2021 to Wed 3/17/2021


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/7/2021 to Thu 8/12/2021
Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA Biostatistics Conference
Joint Statistical Meetings - - JSM 2021, Seattle, WA
Sat 8/7/2021 to Thu 8/12/2021


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Sun 3/27/2022 to Wed 3/30/2022
Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston Biostatistics Conference
ENAR 2022 Spring Meeting of the International Biometric Society -- Houston
Sun 3/27/2022 to Wed 3/30/2022


Meetings of the Eastern North American Region of the International Biometric Society (a.k.a. "ENAR meetings") are held in late March or early April each year and reflect the broad interests of the Society, including both quantitative techniques and application areas. Faculty and student presenters from the Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations.


Sat 8/6/2022 to Thu 8/11/2022
Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC Biostatistics Conference
Joint Statistical Meetings - - JSM 2022, Washington, DC
Sat 8/6/2022 to Thu 8/11/2022


The Joint Statistical Meetings, known simply as "JSM", is the largest gathering of statisticians held annually in North American. Faculty and student presenters from the  Department of Biostatistics regularly participate giving invited talks, contributed talks, and poster presentations. Our students often receive top awards and participate in the affiliated career marketplace at the event.


Recent Events

Biostatistics Dissertation Defense

Zhaowen Sun: Power and Sample Size Determinations in Dynamic Risk Prediction

Tuesday 8/8 10:00AM - 12:00PM
7139 Public Health, Peterson Seminar Room

Zhaowen Sun of the Department of Biostatistics defends her dissertation on "Power and Sample Size Determinations in Dynamic Risk Prediction".

Graduate faculty of the University and all other interested parties are invited to attend


ABSTRACT:

Dynamic risk prediction has recently attracted attention because of its ability to incorporate time-varying information such as repeatedly measured covariates and intermediate event status into the estimation of the probability of failure. Using a landmark data set, the prediction is updated by sub-setting the data with left-truncation at the landmark time and enforcing administrative censoring at the prediction horizon time. The landmark Cox model provides a valid estimation of the probability of failure at the horizon time under single event setting and the landmark proportional sub-distribution hazards model for the cause-specific cumulative incidence function under competing risks setting. Risk difference, defined by the difference in conditional probabilities of failure, serves as an accessible, easily interpreted measurement of effect size when comparing two treatment groups.

In this study, we proposed a test statistic that could be used to compare two conditional probabilities of failure. We derived an analytic formula to calculate the sample size needed to reach the desired risk difference, significance level, and power. We also investigated factors that can affect the power and sample size of the test and conducted simulation studies under various settings to investigate their impact.

Public health significance: This study aims at introducing relatively new risk prediction methods that could incorporate time-dependent information and update risk estimation during the time course of study follow-up; also, providing researchers with references on the power and sample size issues when planning studies involving dynamic risk prediction.

Last Updated On Monday, October 23, 2017 by Valenti, Renee Nerozzi
Created On Monday, August 7, 2017

AprMay 2020Jun
SunMonTueWedThuFriSat
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

Submit events and news

Click to enter calendar events or share news and announcements.