Directory Calendar Careers Alumni Giving

Dr. Ying Ding, PhD

Assistant Professor, Biostatistics

Contact

7133 Parran Hall, 130 DeSoto Street, Pittsburgh, PA 15261
R-znvy: lvatqvat@cvgg.rqh
Primary Phone: 967-179-4952


Personal Statement

My primary research interests include semiparametric methods and inferences, especially for time-to-event data; subgroup analysis such as simultaneous inference and biomarker/subgroup identification. Currently, my collaborative research focuses on proteomic experiment design, network analysis and bivariate genome-wide survival approach for progression of eye disease.


Education

Ph.D. (2010) Department of Biostatistics, University of Michigan, MI
M.A. (2005) Department of Mathematics, Indiana University Bloomington, IN
B.S. (2003) Department of Mathematics, Nanjing University, China


Teaching

Applied Mixed Models  2086 Biostatistics Spring 2013, Spring 2014, Spring 2016, 2017
Biostatistics Seminar  2025 Biostatistics Spring 2014, Fall 2014


Research Funding

  1. Funding Agency: UPMC 
    Grant Title: Competitive Medical Research Fund
    Role on Grant:: Principal Investigator
    Years Inclusive: 7/1/2015 - 6/30/2017
    Total Direct Costs: $25,000                                                                  
  2. Funding Agency: NIH/NIMH
    Grant Number: R03MH108849
    Grant Title: Novel and Robust Methods for Differential Protein Network Analysis of Proteomics Data in Schizophrenia 
    Research
    Role on Grant:: Principal Investigator
    Years Inclusive: 7/1/2016 – 6/30/2018
    Total Direct Costs: $100,000


Selected Publications

  1.  Ding Y, Liu Y, Yan Q, Fritsche LG, Cook RJ, Clemons T, Ratnapriya R, Klein ML, Abecasis GR, Swaroop A, Chew EY, Weeks DE, Chen W (2017). Bivariate Analysis of Age-Related Macular Degeneration Progression Using Genetic Risk Scores. Genetics. Accepted.
  2. Ding Y*, Lin HM. Data Analysis of in vivo Fluorescence Imaging Studies. In: Bai M, editors. In Vivo Fluorescence Imaging: Methods and Protocols. New York: Springer, 2016.
  3. Wang T, Ren Z, Ding Y, Zhou F, Sun Z, MacDonald ML, Sweet RA, Chen W (2016). FastGGM: An efficient algorithm for the inference of Gaussian graphical model in biological networks. PLoS
    Computational Biology. DOI: 10.1371/journal.pcbi.1004755. PMID: 26872036
  4. Fan R, Wang Y, Yan Q, Ding Y, Weeks DE, Lu Z, Ren H, Cook R J, Xiong M, Swaroop A, Chew E Y, and Chen W. (2016). Gene-based Association Analysis for Censored Traits Via Fixed Effect
    Functional Regressions. Genetic Epidemiology. 40(2): 133-43. PMID: 26782979
  5. Ding Y*, Lin HM, Hsu JC. (2015). Subgroup Mixable Inference on Treatment Efficacy in Mixture Populations, with an Application to Time-to-Event Outcomes. Statistics in Medicine. DOI: 10.1002/sim.6822. PMID: 26646305
  6. Ding Y, Nan B. (2015). Estimating Mean Survival Time: When is it Possible? Scandinavian Journal of Statistics 42(2):397-413. PMID: 26019387 PMCID: PMC4442028
  7. Shen L, Ding Y, Battioui C. A Framework of Statistical Methods for Identification of Subgroups with Differential Treatment Effects in Randomized Trials. (2015) In: Chen Z, Liu A, Qu Y, Tang L, Ting N & Tsong Y, eds. Applied Statistics in Biomedicine and Clinical Trials Design: Selected Papers from 2013 ICSA/ISBS Joint Statistical Meetings. New York: Springer.
  8. Peng J +, Ding Y+, Tu S, Lu JJ, Shi D., Chen W, Li X, Wu H, Cai S. (2014). Prognostic nomograms for predicting survival and distant metastases in locally advanced rectal cancers without neoadjuvant treatment. PloS One 9(8):e106344 (+:equal contribution). PMID: 25171093
  9. Ding Y, Fu H. (2013). Bayesian Indirect and Mixed Treatment Comparisons Across Longitudinal Time Points. Statistics in Medicine 32 (15):2613-28. PMID: 23229717
  10. Banerjee M, Ding Y, Noone A. (2012). Identifying Representative Trees from Ensembles. Statistics in Medicine 31(15):1601-16.  PMID: 22302520
  11. Ding Y, Nan B. (2011). A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data. Annals of Statistics 39(6): 3032-3061. PMID: 24436500  PMCID:  PMC3890689
  12. Ding Y, Choi H, Nesvizhskii AI. (2008). Adaptive Discriminant Function Analysis and Reranking of MS/MS Database Search Results for Improved Peptide Identification in Shotgun Proteomics. Journal of Proteome Research 7(11): 4878-89.  PMID: 18788775  PMCID: PMC3744223

Ying   Ding
© 2017 by University of Pittsburgh Graduate School of Public Health

Login  |  Sitemap