EOH Events

EOH Departmental Calendar

Event
Thu 9/19/2019 11:00AM - 12:00PM
EOH Journal Club
Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen EOH Journal Club
Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen
Thu 9/19/2019 11:00AM - 12:00PM
4140 Public Health, Young Seminar Room

Presenter: Brandy Hill

Paper: Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen. A Randomized, Double-Blind Crossover Study

Authors: Denise J. Wooding, Min Hyung Ryu, Anke Huls, Andrew D. Lee, David T. S. Lin, Christopher F. Rider, Agnes C. Y. Yuen, and Chris Carlsten

Abstract:
Rationale: Diesel exhaust (DE), an established model of trafficrelated
air pollution, contributes significantly to the global burden of
asthma and may augment the effects of allergen inhalation. Newer
diesel particulate-filtering technologies may increaseNO2 emissions,
raising questions regarding their effectiveness in reducing harm from
associated engine output.

Objectives: To assess the effects of DE and allergen coexposure on
lung function, airway responsiveness, and circulating leukocytes, and
determine whether DE particle depletion remediates these effects.

Methods: In this randomized, double-blind crossover study, 14
allergen-sensitized participants (9 with airway hyperresponsiveness)
underwent inhaled allergen challenge after 2-hour exposures to DE,
particle-depleted DE (PDDE), or filtered air. The control condition
was inhaled saline after filtered air. Blood sampling and spirometry
were performed before and up to 48 hours after exposures. Airway
responsiveness was evaluated at 24 hours.

Measurements and Main Results: PDDE plus allergen
coexposure impaired lung function more than DE plus allergen,
particularly in those genetically at risk. DE plus allergen and PDDE
plus allergen each increased airway responsiveness in normally
responsive participants.DEplus allergen increased blood neutrophils
and was associated with persistent eosinophilia at 48 hours. DE and
PDDE each increased total peripheral leukocyte counts in a manner
affected by participant genotypes. Changes in peripheral leukocytes
correlated with lung function decline.

Conclusions: Coexposure to DE and allergen impaired lung
function, which was worse after particle depletion (which increased
NO2). Thus, particulates are not necessarily the sole or main
culprit responsible for all harmful effects of DE. Policies and
technologies aimed at protecting public health should be scrutinized
in that regard.
Clinical trial registered with www.clinicaltrials.gov (NCT02017431).

Keywords: diesel exhaust; asthma; filter; genetic susceptibility


4140 Public Health, Young Seminar Room

Recent Events

EOH Journal Club

Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor

Thursday 11/1 11:00AM - 12:00PM
4140 Public Health, Young Seminar Room
Presenter: Kimberly Garrett

Paper: Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor

Authors: Kamil Brzóska, Iwona Grądzka, Marcin Kruszewski,

Abstract: Metallic nanomaterials are utilized in an increasing number of applications in medicine and industry. Their general toxicity was tested in numerous reports both in vitro and in vivo but limited data exist on how nanomaterials affect the activity of cellular signaling pathways activated by growth factors and cytokines. The aim of the present work was to test the hypothesis predicting that silver, gold and superparamagnetic iron oxide nanoparticles may interfere with cellular signaling activated by tumor necrosis factor (TNF) and change the final cellular outcome of TNF action. Such interference may result in disruption of homeostasis and contribute to the development of malignancies such as cancer or autoimmune diseases. Experiments were performed on HepG2 and A549 cell lines. We did not observe any interaction between nanoparticles and TNF at the level of clonogenic growth, apoptosis/necrosis induction or cell cycle. At all these endpoints, the effects of TNF and nanoparticles were additive. In contrast, gene expression analysis revealed synergistic effects. A group of genes was significantly affected only by simultaneous treatment with TNF and nanoparticles and not by any of the factors alone. Observed synergistic effect on IL10 and IL8 expression seems to be of particular importance since these cytokines are often expressed by tumor cells to inhibit tumor-targeted immune response. The observed synergistic effects of TNF and nanoparticles on cytokines expression may have significant consequences for tissue homeostasis and tumor promotion and therefore should be taken into account during development of new nanoparticle-based anticancer therapies.

Click Here For Article

Last Updated On Monday, October 22, 2018 by Orbell, Adam W
Created On Wednesday, September 26, 2018

AugSeptember 2019Oct
SunMonTueWedThuFriSat
1234567
891011121314
15161718192021
22232425262728
293012345
6789101112

Submit events and news

Enter upcoming calendar events or share your school news and announcements at publichealth.pitt.edu/submit.