EOH Events

EOH Departmental Calendar

Event
Thu 9/19/2019 11:00AM - 12:00PM
EOH Journal Club
Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen EOH Journal Club
Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen
Thu 9/19/2019 11:00AM - 12:00PM
4140 Public Health, Young Seminar Room

Presenter: Brandy Hill

Paper: Particle Depletion Does Not Remediate Acute Effects of Traffic-related Air Pollution and Allergen. A Randomized, Double-Blind Crossover Study

Authors: Denise J. Wooding, Min Hyung Ryu, Anke Huls, Andrew D. Lee, David T. S. Lin, Christopher F. Rider, Agnes C. Y. Yuen, and Chris Carlsten

Abstract:
Rationale: Diesel exhaust (DE), an established model of trafficrelated
air pollution, contributes significantly to the global burden of
asthma and may augment the effects of allergen inhalation. Newer
diesel particulate-filtering technologies may increaseNO2 emissions,
raising questions regarding their effectiveness in reducing harm from
associated engine output.

Objectives: To assess the effects of DE and allergen coexposure on
lung function, airway responsiveness, and circulating leukocytes, and
determine whether DE particle depletion remediates these effects.

Methods: In this randomized, double-blind crossover study, 14
allergen-sensitized participants (9 with airway hyperresponsiveness)
underwent inhaled allergen challenge after 2-hour exposures to DE,
particle-depleted DE (PDDE), or filtered air. The control condition
was inhaled saline after filtered air. Blood sampling and spirometry
were performed before and up to 48 hours after exposures. Airway
responsiveness was evaluated at 24 hours.

Measurements and Main Results: PDDE plus allergen
coexposure impaired lung function more than DE plus allergen,
particularly in those genetically at risk. DE plus allergen and PDDE
plus allergen each increased airway responsiveness in normally
responsive participants.DEplus allergen increased blood neutrophils
and was associated with persistent eosinophilia at 48 hours. DE and
PDDE each increased total peripheral leukocyte counts in a manner
affected by participant genotypes. Changes in peripheral leukocytes
correlated with lung function decline.

Conclusions: Coexposure to DE and allergen impaired lung
function, which was worse after particle depletion (which increased
NO2). Thus, particulates are not necessarily the sole or main
culprit responsible for all harmful effects of DE. Policies and
technologies aimed at protecting public health should be scrutinized
in that regard.
Clinical trial registered with www.clinicaltrials.gov (NCT02017431).

Keywords: diesel exhaust; asthma; filter; genetic susceptibility


4140 Public Health, Young Seminar Room

Recent Events

EOH Journal Club

EOH Journal Club - Fall 2017 - Brandy Hill

Thursday 11/16 11:00AM - 12:00PM
EOH Journal Club Seminar - Fall 2017

Date: Thursday November 16, 2017

Time: 11am - 12pm

Presenter: Brandy Hill

Paper:  Traffic-Related Air Pollution and Telomere Length in Children and Adolescents Living in Fresno, CA: A Pilot Study

Authors: Eunice Y. Lee, MS, Jue Lin, PhD, Elizabeth M. Noth, PhD, S. Katharine Hammond, PhD, Kari C. Nadeau, MD, PhD, Ellen A. Eisen, ScD, and John R. Balmes, MD

Abstract:
Objective: The main objective of this pilot study was to gather preliminary information about how telomere length (TL) varies in relation to exposure to polycyclic aromatic hydrocarbons (PAHs) in children living in a highly
polluted city.

Methods: We conducted a cross-sectional study of children living in Fresno, California (n¼14). Subjects with and without asthma were selected based on their annual average PAH level in the 12-months prior to their blood draw. We measured relative telomere length from peripheral blood mononuclear cells (PBMC).

Results: We found an inverse linear relationship between average PAH level and TL (R2¼0.69), as well as between age and TL (R2¼0.21). Asthmatics had shorter mean telomere length than non-asthmatics (TLasthmatic¼1.13, TLnon-asthmatic¼1.29).

Conclusions: These preliminary findings suggest that exposure to ambient PAH may play a role in telomere shortening.


Click Here For Article

Last Updated On Friday, October 27, 2017 by Orbell, Adam W
Created On Monday, October 02, 2017

AugSeptember 2019Oct
SunMonTueWedThuFriSat
1234567
891011121314
15161718192021
22232425262728
293012345
6789101112

Submit events and news

Enter upcoming calendar events or share your school news and announcements at publichealth.pitt.edu/submit.